
Programming language XPLC

4 - 1Edition    05.2005

4. Programming language XPLC 4 - 2

4.1 Function range 4 - 2
4.2 Syntax 4 - 2

4.3 Symbols 4 - 3
4.4 Symbolic addresses 4 - 3

4.5 Type definition 4 - 4
4.5.1 Type definition - simple types 4 - 4
4.5.2 Type definition - combined types 4 - 5
4.5.3 Type definition - further one combined types 4 - 6

4.6 Mathematical and logical operators 4 - 7

4.7 Instruction in LogiCode 4 - 8
4.8 Functions in LogiCode 4 -10

4.9 Standard function blocks 4 -12

4.10 AWL Instruction 4 -21



Programming language XPLC

4 - 2 Edition    05.2005

4. Programming language XPLC

4.1 Function range

XPLC actual a programming software for BWO compact controls CNC 902/903/904/905.
The software actual on all Windows (ME, XP, NT) and Linux PC’s executably.  The connection is
made by an Ethernet Interface (TCP/IP).

XPLC possesses the following function range:

- PLC Programming in LogiCode and AWL
- Symbolic addressing and allocation of symbol terms
- Function editor
- Symbol editor
- Standard function blocks (LogiCode)
- Creation of user specific functions
- On-line debuggers
- On-line test and diagnostic functions
- Programming of the EEPROM memory

4.2 Syntax

The syntax of the programming language actual a subset of the C language.

Used items are:

- Symbols
- Symbolic addresses
- Types
- Mathematical and logical operators
- Separators
- Comments
- C commands



Programming language XPLC

4 - 3Edition    05.2005

4.3 Symbols (symbolic terms)

On symbol or symbol term actual a consequence of letters and digits, which may contain no
separators and start with a letter must.

for example:
i
test
alfa
f00123
Ablink
Simul

123foo does not permit!

4.4 Symbolic addresses

are fixed addresses for

Inputs: e1.1.1
Outputs: a1.1.1
Flags: m1.1

Free symbol terms can be assigned to the symbolic addresses, which are used in the program like
symbolic addresses.

 symbolic symbolic
 addresses terms

Inputs: e1.1.1  —> ELT-ON comment
Outputs: a1.1.1  —> Ablink comment
Flags: m200.3  —> Simul comment



Programming language XPLC

4 - 4 Edition    05.2005

4.5 Type definition

4.5.1 Simple (pre-defined) types

bit } Using only the LSB bit

bool }

char } 1 byte and sign (limiting values : -128 to +127)
byte }

int }
short } 2 byte  and sign (limiting values: -32768 to +32767)
word }

long } 4 byte and sign (limiting values: -7FFFFFFF to +80000000)

fixed } 4 byte  (limiting values: -2000000 to +2000000) Type for fixed point arithmetic

Each not defined symbol is a bit and/or a byte



Programming language XPLC

4 - 5Edition    05.2005

4.5.2 Combined types (in the listing types)

May only of simple types consist.
Can be created you as required.

counter Up / downward counters

bit out
bit trig
long value

toggle Toggle
bit out
bit trig

timer Ozillator, in-/ turn-off delay

bit out
bit enabled
byte typ
bit state
long counter
long max

parameter CNC parameter
byte fill
long nummer
long mantisse
long status
word exponent
byte cmd



Programming language XPLC

4 - 6 Edition    05.2005

4.5.3 Further one combined types

Uses for BWO standard modules.

System-Calls

syscall_129 Timer

byte number
long timer_ad

syscall_130 CAN Bus

byte number
byte cmd
byte node
byte bus_status
byte adress
byte present
byte status
word error
byte error_register
byte    custom_error_0
byte    custom_error_1
byte    custom_error_2
byte    custom_error_3
byte    custom_error_4

syscall_131 Analog in/output

byte number
byte read
byte channel
word value



Programming language XPLC

4 - 7Edition    05.2005

4.6 Mathematical and logical operators

+ Addition
- Subtraction
* Multiplication --> or contents of … with pointer operations
/ Division
% Remainder of the division
& Bit by bit AND --> or address of … with pointer operations
| Bit by bit OR
^ Bit by bit XOR

Negation
&& Logical AND
|| Logical OR

== directly
!= unequally
> more largely
| smaller
> = more largely directly
< = smaller directly
= Allocation

Trennzeichen
alle Operatoren und folgende Zeichen
;
,
(
)
{
}

comments

/ / Line comment
/ *

Comment block
*/



Programming language XPLC

4 - 8 Edition    05.2005

4.7 Instruction in LogiCode

Simple instruction become also ;  terminated.
Assembled instruction are summarized by { } brackets in a block.
Within the parentheses individual instruction can be, in each case also ;  are terminated.

Allocation:  =

LED1 = REG_FR;

if:  Conditioned versions fulfills

if (HAND_K1 & REOK_K1 & TA6) condition
{
M03_K1 = 1; fulfills
M04_K1 = 0;
}

if else:  Conditioned version fulfilled / does not fulfill

if (Ref1) condition
{
Refz1 = 5; fulfills
}
else

{
REPOP1 = RPFMA1; does not fulfill
REPOM1 = RPFPA1;
REFZ1 = 1;
}

while:  Loop with test at the start

i=0;
while (i < 5) test at the start
{

i+1;
}



Programming language XPLC

4 - 9Edition    05.2005

4.7 Instruction in LogiCode  (continued)

do while: Loop with test at the end

i=0;
do {

i+1;
   } while ( i > 5 ); Test at the end

switch, case, break, default

instruction for multiple branches (state machine)

Example:

switch (SK1) query
{

case 0 branch 1
Sk1 = 1;
break; end

case 1 branch 2
SK1 = 2;
break;

case 2
SK1 = 3;
break;

case 3:
SK1 = 4;
break;

case 4:
SK1 = 5;
break;

case 5:
SK1 = 0;
break;

default;

break;



Programming language XPLC

4 - 10 Edition    05.2005

4.8 Instruction in LogiCode (C-Code)

Example of a function in LogiCode (C-CODE)

// fillmemory

// interface definition
byte *memory; // memory actual on pointers on on byte
long count; // number of cells which can be filled
byte pattern; // samples

// end of the interface

{ // beginning the C code statements for the function

long i; // counting variable

i=0;
while (i < count)

 {
 *mamory = pattern; Contents pattern are written the position,

on the memory show
  memory = memory+1; pointers increase
 i = i+1; loop +1
 }

} // end the C code statements

Function call

fillmemory(&start, number, samples);

Sample application

fillmemory(&ME50,30,0x00);

Start: ME50 flag
Number: 30 constant
Sample: 0x00



Programming language XPLC

4 - 11Edition    05.2005

4.8 Instruction in LogiCode (C-Code) (continued)

Example of a function in statement list

*
*  move
*
*  Interface definition
*
interface 0 * start of the interface amount of local variable
dst * target
src * source
count * number of items
end * end of the interface
*
*  Beginning of the statements for the function
*

fwd
lrs  src
lrs  dst
lrs  count
emove

*
*  End of the statements for the function
*

Function call

move(Quelle, target, Anzahl);

Sample application

move(&M100.1, M150.1, 32);

Source: M100.1 flag
Target: M150.1 flag
Number 32 constant



Programming language XPLC

4 - 12 Edition    05.2005

4.9 Standard functions blocks

COUNTER UP c_CTU

Call

c_CTU(&Counter_x, Enable, Reset, Max)

Example

M8_TEST = c_CTU(&Z1, TA9, TA11, 20);

Counter_x: Z1 Type Counter 1
Enable: TA9  Flag PLC Key 09
RESET: TA11  Flag PLC Key 11
Max one: 20  constant

M8_TEST is settinged, if count value achieves max (= 20) .

COUNTER DOWN c_CTD

Call

c_CTD(&Counter_x, Enable, RESET, Max)

Example

M9_TEST = c_CTD(&Z2, TA10, TA11, 10);

Counter_x: Z2 Type Counter 2
Enable: T10  Flag PLC Key 09
Reset: T11  Flag PLC Key 11
Max one: 10  constant

M9_TEST is settinged, if count value achieves 0 .



Programming language XPLC

4 - 13Edition    05.2005

4.9 Standard functions blocks (continued)

TRIGGER c_TRIG

Call

c_TRIG(&Trig_x, In)

Example

if (c_TRIG(&TRIG1, TA8))
{
M10_TES = 1;
}

Trig_x: TRIG1 flag trigger  1
In: TA8 flag PLC Key 8

Flag M10_TES is settinged with positive edge by TA8 .

RS-FLIP-FLOP c_RS

Call

c_RS(&RS_x, set, Reset)

Example

ATSTR1 = c_RS(&RS1, TA12, TA13);

RS_x: RS1  flag RS flip flop 1
Set: TA12  flag PLC key 12
RESET: TA13  flag PLC key 13

Output ATSTR1 is settinged with indicator TA12, reset with TA13 .



Programming language XPLC

4 - 14 Edition    05.2005

4.9 Standard functions blocks (continued)

T-FLIP-FLOP c_TOGGLE

Call

c_TOGGLE(&Toggle_x, In)

Example

M2_TEST = c_TOGGLE(&TOGG5, TA2);

Toggle_x: TOGG5 Type Toggle
In: TA2 Flag PLC Key 2

Flag M2_TEST is settinged or reset alternately by flag TA2

OSZILLATOR c_OSZ

Call

c_OSZ(&Timer_x, Enable, Zeit)

Example

ABLINK = c_OSZ(&TIMER1,!PWON, 1000)

Timer_x: TIMER1 type timer
Enable: PWON flag power on
Time (in ms): 1000 constant (1000 ms)



Programming language XPLC

4 - 15Edition    05.2005

4.9 Standard functions blocks (continued)

SWITCH-OFF DELAY  c_TOFF

Call

c_TOFF(&Timer_x, Enable, Zeit)

Example

MFRMDR = c_TOFF(&TIMER8, FRMOTUI, 1000);

Timer_x: TIMER8 type timer 8
Enable: FRMOTUI input
Time (in ms): 1000 constant (1000 ms)

If milling motor stop: (input  FRMTUI = L) flag MFRMDR delays reset

SWITCH-ON DELAY  c_TON

Call

c_TON(&Timer_x, Enable, Zeit)  time in ms

Example

if (c_TON(&TIMER7, M41_K1, 2000))
{
M41_K1 = 0;
}

Timer_x: TIMER7 type timer 7
Enable: M41_K1 flag
Time (in ms): 2000 constant



Programming language XPLC

4 - 16 Edition    05.2005

4.9 Standard functions blocks (continued)

READING PARAMETER BY CNC LPARC

Call

LPARC(Ziel, register, channel, p-number, Enable)

Example

LPARC(&P410E, 1, 410, m11_TES)

or

if (c_TRIG(&TRIG4, E1.1.6))
{
LPARC(&P410E, 1, 410, e1.1.6);
}

Target register: P410E long
Channel: 1 constant
Parameter number: 410 constant
Enable: E1.1.6 input



Programming language XPLC

4 - 17Edition    05.2005

4.9 Standard functions blocks (continued)

WRITE PARAMETERS CNC SPARC

Call

SPARC(Kanal, p-number, mantissa, exponent, status, command, Enable)

Example

if (c_TRIG(&TRIG2, E1.1.5))
{
SPARC(1,405,P405WE,0,0,0,E1.1.5);
}

or

SPARC(1,406,P406WE,0,0,0,c_TRIG(&TRIG3,E1.1.5));

Channel: 1 constant
Parameter number: 406 constant
Parameter mantissa: P406WE long
Parameter exponent 0 constant
Parameter status: 0 constant
Parameter command: 0 constant
Enable: E1.1.5 input



Programming language XPLC

4 - 18 Edition    05.2005

4.9 Standard functions blocks (continued)

ANALOGUE VALUE INPUT analog_in

(2 channel analogue input clip)

Call

Input value = analog_in (node no, clip no, channel no)

Input value register (in mV): -10000 - + 10000
Node no: 1 - 5
Analog input clip no: 1, 2
Channel no (clip): 1, 2

Example

ADW1 = analog_in(2,1,1);

or

if(ADWEN1)
{
ADW1 = analog_in(2,1,1);
}

Input value register (in mV): ADW1  long
Node no: 2
Analog input clip no: 1
Channel no (clip): 1



Programming language XPLC

4 - 19Edition    05.2005

4.9 Standard functions blocks (continued)

ANALOGUE VALUE OUTPUT  analog_out

(2 channel analogue output clip)

Call

Analog_out(node no, clip no, channel no, output voltage)

Node no: 1 - 5
Analog output clip no: 1, 2
Channel no (clip): 1, 2
Output voltage in mV:  -10000 - +10000

Example

analog_out(2,1,1,6000);

or

if(SPIRE1)
{
analog_out(1,1,1,q1656W);
}
else
{

analog_out(1,1,1,0);
}

Node no: 1 constant
Analog output clip NR: 1 constant
Channel NR (clip): 1 constant
Output voltage in mV: q1656W/0 long/Konstante



Programming language XPLC

4 - 20 Edition    05.2005

4.9 Standard functions blocks (continued)

MOVE FLAG AREA  MOVE

Call

move(Source, target, number)

Example

move(&C1_ER0, s130 + 10.6);

Further functional modules uses for BWO standard modules

TIMER LOG ON TO THE SYSTEM c_register_timer

Call

c_register_timer

ALL TIMERS LOG ON AUTOMATICALLY c_setup_timer

Call

c_setup_timer

ALL TIMERS LOG ON AUTOMATICALLY syscall

Call

syscall(number, area)



Programming language XPLC

4 - 21Edition    05.2005

4.10 Assembler (XASM) instruction

In the following all usable assembler (XASM) instruction (statement list) are listed.
The following notation use finds:

const = Numbers or time constant (decimal:  534, in hexadecimals:  $$A436, octal:  ‘ 346
paddr  = Program address (absolute: $$F9B2, symbolically:  START, relative:  * +39)
maddr  = Storage address (absolute: $610, symbolically:  M98.1)

General ones of instruction

NO OPERATION  NOP
Dummy instruction.  NOP  actual always in a program line available (substitute symbols).

WORD SIZE  SIZE [ 4,2 ]
Word width for certain instruction of 4 to 2 byte switch and in reverse.

COUNT ADDRESS FORWARD, COUNT ADDRESS BACKWARD FWD, BWD
After the instruction FWD  or  BWD  is advanced with certain storage instructions the address in
ascending or descending order.



Programming language XPLC

4 - 22 Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Instruction for boolsche algebra

IS load operand 2 L maddr, LN maddr, L( maddr, LN( maddr
Drawer contents from operand 2 to IS register. Use with negation N and brackets (.

IS AND operand 2 U maddr,UN maddr,UN( maddr
Logical AND linkage IS register with contents of operand 2.  Use with negation N and brackets (.
The result of the linkage is stored in the IS register.

IS OR operand 2 O maddr, ON maddr, ON( maddr
Logical OR linkage IS register with contents of operand 2.  Use with negation N and brackets (.
The result of the linkage is stored in the IS register.

LOAD operand 2 IS = maddr, = N maddr
Allocation of contents of the IS register to operand 2.  Use with negation N.

SET operand 2 S maddr, SN maddr
Settinging contents of operand 2 if the IS register a 1 contains.  With use with negation N:  Setting
contents of operand 2 if the IS register 0 contains maddr may be only flag or original address.

RESET operand 2 R maddr, RN maddr
Resetting contents of operand 2 if the IS register a 1 contains.  With use with negation N:  Reset
contents of operand 2 if the IS register 0 contains maddr may be only flag or original address.



Programming language XPLC

4 - 23Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Instruction for memory influence

LOAD MEMORY HIGH, LOAD MEMORY LOW LDH maddr, LDL maddr
Loading of a memory byte with 1 or with 0. maddr may be only flag or original address.

LOAD operand 2 X, LOAD operand 2 Y LX maddr,LY maddr
Allocation of contents of the x-register or y-register after operand 2.
Cross reference:  Y LOAD

LOAD operand 2 XY LXY maddr
Allocation of the total of contents from X and y-register to operand 2.
Cross reference:  LX,LY,X LAD,Y LAD

LOAD [X] IS ISRX
Loading of the memory byte, whose address is located in the x-register, with contents of the IS
register.  The address in the x-register may be only flag or original address.  The value in the x-
register is incremented thereafter.
Cross reference:  XISR

FILL MEMORY [X] FILL const n
Loading of n memory byte with const, starting with the storage address, which is located in the x-
register.  The storage address in the x-register may be only flag or original address.
Cross reference:   EFILL,FWD,BWD,X LAD

FILL MEMORY [TOS] EFILL
Loading of n memory byte with a constant, which is in the TOS register.  The address of the first
memory byte is just like the number of n of the memory bytes which can be filled in the TOS
register:
n = TOS
maddr = TOS-1
const = TOS-2
Frame around three registers decremented maddr may only flag or original address be.
Cross reference:   FILL,FWD,BWD,LCS,LCHS



Programming language XPLC

4 - 24 Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Instruction for memory influence

MOVE MEMORY [X,Y] MOVE const
Copying contents of const memory bytes.  Source address and destination address are in the
index registers:
Source address = Y-register
Destination address = X-register.
Destination address may be only flag or original address.
Cross reference:   FWD,BWD

MOVE MEMORY [TOS] EMOVE
Copying contents of n memory byte.  n, source address and destination address are located in the
TOS register:
n = TOS
Destination address = TOS-1
Source address = TOS-2
Frame is decremented around three registers.  Destination address may be only flag or original
address.
Cross reference:  LCS,LCHS,FWD,BWD



Programming language XPLC

4 - 25Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Instruction for register influence

LOAD X REGISTER, LOAD Y REGISTER X LAD const, Y LAD const
Loading of the X or Y register with the value const.
Cross reference:   LSX,LSY

LOAD STACK TO X, LOAD STACK TO Y LSX, LSY
Loading of the X or Y register with the value, which is in the Low byte of the TOS register.  Frame
is decremented over on registers.
Cross reference:   LCS,XLAD,YLAD

EXCHANGE X Y EXY
Exchange contents of x-register and y-register.
Cross reference:   LCS,XLAD,YLAD,LSX,LSY

LOAD INDIRECT IS [X] XISR
Loading of the IS register with contents of the memory byte, of its address in the x-register contain
actual.  The value in the x-register is decremented thereafter!
Cross reference:   ISRX,XLAD

LOAD CONSTANT TO STACK LCS const
Loading of the lower 16-Bit of the TOS register (Low Word) with const.  The High Word remains
uninfluenced.  Frame is incremented over on registers.

LOAD CONSTANT TO HIGH STACK LCHS const
Loading of the upper 16-Bit of the TOS register (High Word) with const   The Low Word and frame
remain uninfluenced.

LOAD X TO STACK, LOAD Y TO STACK LXS,LYS
Loading of contents of the x-register or y-register in the TOS register.  The High Word remains
uninfluenced.  Frame is incremented over on registers.



Programming language XPLC

4 - 26 Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Instruction for register influence

LOAD REGISTER TO STACK LRS maddr
Loading contents of maddr to maddr+3 (4 byte) or of maddr and maddr+1 (2 byte) in the TOS
register.  Whether 2 or 4 byte to be loaded depends on the respective adjustment over the
instruction SIZE. Frame is incremented around two or on registers.
Cross reference:   SIZE,LSR,BLRS

LOAD STACK TO REGISTER LSR maddr
Loading of the memory bytes maddr to maddr+3 (4 byte) or maddr and maddr+1 (2 bytes) with
contents of the TOS register. Whether 2 or 4 byte to be loaded depends on the respective
adjustment over the instruction SIZE.  Frame around two or on registers decremented maddr may
be only flag or original address.
Cross reference:   SIZE,LRS,BLSR

BYTE LOAD REGISTER TO STACK BLRS maddr
Loading TOS registers with contents of maddr  (1 byte).  Frame is incremented over on registers.
Cross reference:   SIZE,BLSR,LRS,LSEA

BYTE LOAD STACK TO REGISTER BLSR maddr
Loading of the memory byte maddr with contents of the TOS register.  Frame over on registers
decremented maddr may be only flag or original address.
Cross reference:   SIZE,BLRS,LSR,LEAS

LOAD EA TO STACK LEAS
Loading TOS registers with n of the initially or output bit.   Only the niederwertigste bit (bit 0, LSB)
is used and stored by contents of the in and original addresses in the TOS register bit-oriented.  n
and source address are located in the TOS register:
n = TOS
Address Eingang1/Ausgang1 = TOS-1
n<=32. frame is incremented over on registers.
Cross reference:   FWD,BWD,LRS,BLRS



Programming language XPLC

4 - 27Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Instruction for register influence

LOAD STACK TO EA LSEA
Copy from n bits from the TOS register to n original addresses.  Each bit in the TOS register is put
on an original address.  n and destination address are located in the TOS register:
n = TOS
Destination address = TOS-1
Bit 1 = TOS-2
n<=32.  Frame is decremented over on registers.
Cross reference:   LCS,LCHS,FWD,BWD,LSR,BLSR

DUPLICATE TOS DUP
Copy from TOS-1 to TOS. Frame over on registers is incremented.
Cross reference:   POP

SWAP TOS SWAP
Interchange of TOS-1 and TOS. Frame remains unchanged.

DECREMENT SP POP
TOS select.  Frame is decremented over on registers.
Cross reference:  DUP

LOAD EEPROM-CHECKSUM CKS
Loading of the EEPROM Check total in the TOS register.  Frame is incremented over on registers.

LOAD STACK POINTER LSP
Loading of frame in the TOS register.  Frame is incremented over on registers.



Programming language XPLC

4 - 28 Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Arithmetic instruction

INCREMENT MEMORY INC maddr
Increment the 32-Bit of memory word, which is in the memory in the addresses maddr to maddr+3
(4 byte).
Cross reference:   DEC

DECREMENT MEMORY DEC maddr
Decrement the 32-Bit of memory word, which is in the memory in the addresses maddr to
maddr+3 (4 byte)
Cross reference:   INC

ADD TOS WITH TOS-1 ADD
32-Bit addition of the value in the TOS register with the value in TOS-1. The result is stored in the
TOS register, SP are decremented over on registers.
Cross reference:   LCS,LCHS

SUBTRACT TOS-1 WITH TOS SUB
32-Bit subtraction of the value in the TOS register of the value in TOS-1.  The result is stored in the
TOS register, SP are decremented over on registers.
Cross reference:   LCS,LCHS

MULTIPLY TOS WITH TOS-1 MUL
32-Bit multiplication of the value in the TOS register with the value in TOS-1.  The result is stored in
the TOS register, SP are decremented over on registers.
Cross reference:  LCS,LCHS

DIVIDE TOS-1 WITH TOS DIV
32-Bit division of the value in TOS-1 by the value in the TOS register.  The result is stored in the
TOS register, SP are decremented over on registers.
Cross reference:   LCS,LCHS,REM



Programming language XPLC

4 - 29Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Arithmetic instruction

MODULO DIVISION TOS-1 WITH TOS REM
32-Bit modulo division of the value in TOS-1 by the value in the TOS register.  The result is stored
in the TOS register, SP are decremented over on registers.
Cross reference:   LCS,LCHS,DIV

NEGATION TOS NEG
Reversal of sign at the value, which is located in the TOS register.  SP remains unchanged.
Cross reference:  LCS,LCHS

ADD CONSTANT TO X, ADD CONSTANT TO Y XIADD const, YIADD const
16-Bit addition of the value in the x-register or y-register with the value const.  The result is stored
in x-x-bzw. the y-register.
Cross reference:   XLAD,YLAD,ADD



Programming language XPLC

4 - 30 Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Logical 32-Bit of instruction

LOGIC AND TOS-1 WITH TOS AND
Logical AND linkage bit by bit of the bit pattern in the TOS register with the bit pattern in TOS-1.
The result is stored in the TOS register, SP are decremented over on registers.
Cross reference:   LCS,LCHS

LOGIC OR TOS-1 WITH TOS OR
Logical OR linkage bit by bit of the bit pattern in the TOS register with the bit pattern in TOS-1.
The result is stored in the TOS register, SP are decremented over on registers.
Cross reference:   LCS,LCHS

LOGIC NOT TOS NOT
Logical NOT linkage bit by bit of the bit pattern in the TOS register with the bit pattern in TOS-1.
The result is stored in the TOS register, SP are decremented over on registers.
Cross reference:   LCS,LCHS

LOGIC EXCLUSIVE OR TOS-1 WITH TOS XOR
Logical exclusive OR linkage bit by bit of the bit pattern in the TOS register with the bit pattern in
TOS-1.  The result is stored in the TOS register, SP are decremented over on registers.
Cross reference:  LCS,LCHS

LOGIC SHIFT TOS LEFT SFTL
Shift bit by bit of the bit pattern in TOS -1 around in the TOS register to the left.  The result is
stored in the TOS register, SP are decremented over on registers.
Cross reference:   LCS,LCHS,SFTAR

LOGIC SHIFT TOS RIGHT SFTR
Shift bit by bit of the bit pattern in TOS -1 around in the TOS register to the right.  The result is
stored in the TOS register, SP are decremented over on registers.
Cross reference:   LCS,LCHS,SFTAR

LOGIC SHIFT TOS ARITHMETIC RIGHT SFTAR
Arithmetic shift bit by bit of the bit pattern in TOS -1 around in the TOS register to the right.  The
TOS register contains a signed value.  The result is stored in the TOS register, SP are
decremented over on registers.
Cross reference:   LCS,LCHS,SFTL,SFTR



Programming language XPLC

4 - 31Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Jump instructions

JUMP IMMEDIATE JMP,SP paddr
Absolute jump to paddr (absolute, relative or symbolic address).
Cross reference:   JMPT,JMPF,SPB,SH,SL

JUMP IF TOS TRUE JMPT paddr
Conditioned jump to paddr (absolute, relative or symbolic address), if the lowest bit (Bit0, LSB) of
the TOS register 1 actual
Cross reference:   JMP,JMPF,SPB,SH,SL

JUMP IF TOS FALSE JMPF paddr
Conditioned jump to paddr (absolute, relative or symbolic address), if the lowest bit (Bit0, LSB) of
the TOS register 0 actual
Cross reference:   JMPT,JMP,SPB,SH,SL

SKIP IF MEMORY HIGH SH n maddr
Conditioned jump for n of instruction, if contents of the memory byte maddr 1 (High) actual.
Cross reference:   JMPT,JMPF,JMP,SPB

SKIP IF MEMORY LOW SL n maddr
Conditioned jump for n of instruction, if contents of the memory byte maddr 0 (Low) actual.
Cross reference:  JMPT,JMPF,JMP,SPB

CONDITIONED JUMP IS SPB paddr, SPBN paddr
Conditioned jump to paddr (absolute, relative or symbolic address), if in IS register the value 1 or 0
is.
Cross reference:   JMPT,JMPF,JMP,SH,SL

DECODER [TOS] DCD paddr
Indirect calculated jump.  The destination address results off contents of the TOS register and
paddr (absolute or symbolic address).  Frame is decremented over on registers.



Programming language XPLC

4 - 32 Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Jump instructions

DECREMENT X AND JUMP IF ZERO XDCR n
Conditioned jump for n of instruction.  Contents of the x-register are first decremented.  Afterwards
tested whether the x-register the value zero contains.  Actual this the case n the following
instruction are skipped.

DECREMENT Y AND JUMP IF ZERO YDCR n
Conditioned jump for n of instruction.  Contents of the y-register are first decremented.  Afterwards
tested whether the y-register the value zero contains.  Actual this the case n the following
instruction are skipped.



Programming language XPLC

4 - 33Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

Comparing instruction

TEST IF TOS-1 EQUAL TO TOS TEQ
Comparison of TOS register contents TOS and TOS-1.  The result is stored into TOS:
TOS = TOS-1: TOS=1
TOS <> TOS-1: TOS=0
SP over on register is decremented.

TEST IF TOS-1 GREATER THAN TOS TGT
Comparison of TOS register contents TOS and TOS-1.  The result is stored into TOS:
TOS-1 > TOS: TOS=1
TOS-1 <= TOS: TOS=0
SP over on register is decremented.

TEST IF TOS-1 LESS THAN TOS TLT
Comparison of TOS register contents TOS and TOS-1.  The result is stored into TOS:
TOS-1 < TOS: TOS=1
TOS-1 >= TOS: TOS=0
SP over on register is decremented.



Programming language XPLC

4 - 34 Edition    05.2005

4.10 Assembler (XASM) instruction (continued)

BCD conversion instructions

CONVERT INTEGER TO BCD TOS IBCD
Changes contents of the TOS register from the Integer format to BCD format. SP remains
unchanged.
Cross reference:  BCDI

CONVERT BCD TO INTEGER TOS BCDI
Changes contents of the TOS register from the BCD format to Integer format.  SP remains
unchanged.
Cross reference:   IBCD


	4. Programming language XPLC
	4.1 Function range
	4.2 Syntax
	4.3 Symbols (symbolic terms)
	4.4 Symbolic addresses
	4.4 Symbolic addresses
	4.5 Type definition
	4.5.1 Simple (pre-defined) types
	4.5.2 Combined types (in the listing types)
	4.5.3 Further one combined types
	4.6 Mathematical and logical operators
	4.7 Instruction in LogiCode
	4.8 Instruction in LogiCode (C-Code)
	4.9 Standard functions blocks
	4.10 Assembler (XASM) instruction
	 
	back >

