
AMKASYN

VARIABLE SPEED DRIVES

AMKASYN

Digital drive systems

Option card AE-PSC
• Programmable control PS
• CAN Interface (CAN-S)

Option card for AZ/AW systems in the version AZ-CNS
Option card for KU systems in the version KU-PSC

CAN Network configuration

Important notes

Due to possible destruction of components by static discharge, touching the electrical
connections on the option card should be avoided.

Please attach option card directly from the packaging in the option slot of the KU or
AZ module without exerting force and secure with the screw on the front panel.

Rights reserved to make technical changes

3701.E Part-No.: 28684

Arnold Müller, Antriebs- und Steuerungstechnik GmbH & Co. KG, D-73221 Kirchheim/Teck,
Tel.: 07021/50 05-0, Telefax: 07021/50 05-176, E-Mail: Info@amk-antriebe.de

 AMKASYN

Inhalt

11 AABBBBRREEVVIIAATTIIOONNSS AANNDD EEXXPPLLAANNAATTIIOONNSS.. 44

22 CCAANN BBUUSS IINNTTEERRFFAACCEE .. 55

33 CCAANNOOPPEENN .. 66
3.1 Object list..6
3.2 Real time communication ...7
3.3 Communication profile..7
3.4 Synchronous and Asynchronous PDO transmission..7

44 IIMMPPOORRTTAANNTT FFOORR CCAANN NNEETTWWOORRKK CCOONNFFIIGGUURRAATTIIOONN .. 1111

55 PPRREEDDEEFFIINNIITTIIOONN FFIILLEESS .. 1122

66 WWRRIITTEE AA CCAANN CCOONNFFIIGGUURRAATTIIOONN FFIILLEE .. 1133
6.1 Common parameters..13
6.2 Transmit PDO...14
6.3 Receive PDO..14

6.3.1 Mapping entry (alias Map)..15
6.3.2 Relation of PS designator to the CAN index/subindex...15

6.4 Index table API ...17
6.4.1 Transmission Type (alias TransTyp)..19
6.4.2 COB-ID and arbitration prinziple (alias COBpdo)...19

77 CCCCFF FFIILLEE AACCCCOORRDDIINNGG TTOO AA EEXXAAMMPPLLEE AAPPPPLLIICCAATTIIOONN .. 2211

88 CCOONNVVEERRTTIINNGG WWIITTHH AAMMKK TTOOOOLL CCAANNCCOONNVV .. 2255
8.1 Results message..25
8.2 Installation and selection of CANConv...26

99 AAMMKK TTOOOOLL DDVVLLAADDEERR .. 2288
9.1 Introduction...28
9.2 Configuring Sbus..28
9.3 Operation..30

9.3.1 Starting the program ..30
9.3.2 Selection of the working path in the PC ...31
9.3.3 Selection of the DV ..31
9.3.4 Selection of the file to be edited...32
9.3.5 Editing and copying a file ...32

9.4 Configuration possibilities through command line parameters...33
9.4.1 Extension of the list of the text file formats...33
9.4.2 Definition of a special function ...33

CAN Network Configuration Page 2

 AMKASYN

List of Figures

Figure 2-1 CANopen communication model ..6
Figure 2-2 Process Data Object PDO ..7
Figure 2-3: Synchronous and Asynchronous PDO transmission ...8
Figure 2-4: BUS SYNChronization and actuation ..9
Figure 2-5: Hardware synchronization ...10
Figure 3-1 Overview of CAN network configuration ...11
Figure 5-1: Scheme of data transfer...16
Figure 5-2 Arbitration principle ...20
Figure 6-1: Data exchange definition ...21

CAN Network Configuration Page 3

 AMKASYN

1 Abbreviations and explanations

AE-PSC AMKASYN Extension PS CAN
APROS AMK PS programming software
Arbitration Bus access method; method with which access to the bus

is regulated. Solution of the conflict if several stations want
to send a message at the same time

AZ/AW system AMKASYN modular drive system, consisting of
central module and inverter modules

AZ-CNS AMKASYN option card for AZ modules
Broadcasting describes the possibility of addressing all subscribers to the

network simultaneously
CAN Controller Area Network
CANconv AMK Can converter auxiliary program for transferring the CAN

network configuration to the master
ccb CAN configuration binary file type *.ccb
ccf CAN configuration file *.ccf
CiA CAN in Automation, international users and manufacturers

group e.V.
DVLader AMK auxiliary tool for flash database access
Emergency Service Bus fault characteristic on failure of one or several

subscribers.
Telegram header Header information of a message (e.g. priority...)
Ident number (ID No.) Parameter for parameterizing the AMKASYN system
NMT service Network management service (network initialization, bus error

monitoring, status monitoring of the individual devices)
Node Guarding Network node monitoring, is performed by the NMT master
Parameter (ID No.) by which the AMKASYN systems are parameterized
KU AMKASYN digital compact converter
KU-PSC AMKASYN option card for KU system
Life Guarding NMT slave monitors whether the network node monitoring of

the NMT master is performed.
PDO Process Data Object
PS Programmable control
R-PDO Receive PDO
SDO Service Data Object
T-PDO Transmit PDO

CAN Network Configuration Page 4

 AMKASYN

2 CAN BUS Interface

The CAN interface integrated on the AE-PSC option card fulfils the standard CiA CAN 2.0B
and extends this.
To satisfy the tasks of drive systems, the AMK CAN interface offers apart from the standard
CAN data channel a synchronous clock signal as extension and is designated as CAN-S.
Thus apart from the demand data (parameters, commands, diagnosis) in addition
synchronous data (setpoints, actual values, real time bit messages) are transmitted exactly
synchronized to one another.

The CAN-S interface consists of the CAN data channel and a synchronous clock
signal with which all bus subscribers are synchronized exactly to a master clock.

CAN Network Configuration Page 5

 AMKASYN

3 CANopen

The CAN communication is based on the CANopen standard CiA Draft Standard 301
Version 4.01, thus further components corresponding to the standard of external
manufacturers can be integrated into the BUS system (e.g. I/Os or gateways). The following
functionality is supported:

 - CANopen Minimum Capability Device Boot-Up
 - Node Guarding / Life Guarding
 - Transmit PDOs
 - Receive PDOs
 - Client/Server SDOs
 - Emergency Object
 - Synchronization Object

3.1 Object list

Each CANopen device has a CANopen object list. The object list is divided into different
areas. There are areas for the description of the data types, of the communication and of the
application. All data which can be exchanged through the CAN network are represented by
corresponding objects in the object list. Access to entries of the object list is made through a
16-bit index and an 8-bit subindex.

The object list is the data and parameter interface of the node to the CAN network. It
describes the device with regard to its application and communication properties.

Figure 3-1 CANopen communication model

� � �

� � �
� � 	

 �

� � � � � � � � 	 � �
 � � � �

 � � � 	 � � � � � �

� � � � � � � � � �

� �

 � � � 	 � � � � � � � � � � 	 � � � � �

� �
 � � 	 � �
 � � � � 	 	 � � � � � � � � � � � � �

� � � � � 	 �

� � � � � � � � � � � � � � � � � � 	
� � � � � � � � � � � � � � ! � � � � " � � � � � � � � � � � � 	
� � � � � � � � � � � # � $ � � 	 � � $ �
� � � � � � � � � � � % $ � � & � � � � � � � � � � 	

� ' # � � � � � � � 	 � � � � � (� �) � $ � � � & � $ � � �
� � � � � � � � � $ � � � � � � � � & � � � � � � � 	 � 	 � � 	 � � � � � � 	 �
� � � � � � � � � � � � (� �) � � � � � � � � � " � � � � � � � � � � � � 	
� � � � � � � � � % � � � � � $ � � � � � � � � & � � � � � � � 	

� � � � � � � � � � � � � � � � � & � � $

� � � $ � � � $ � � � � � & � � ! � � * � � � � � � � � � � � � � 	
� � � � � � � * � � * � * � � � � � � � � � � � � � � � � � � �

�
�
��
��
�
*
�

�
�
��
$
�
��
�

�
+
�
!
�
�
&
�

CAN Network Configuration Page 6

 AMKASYN

3.2 Real time communication

So-called PDOs (Process Data Objects) are used for exchanging real time data. PDO
communication can be described with the producer / consumer model. The process data are
transmitted by a node (producer) and received by one or several nodes (consumers). PDOs
are not confirmed by the receiver. In PDOs all maximum 8 data bytes of a CAN frame are
available for the data exchange.

Figure 3-2 Process Data Object PDO

� � � � � �

 � � �
 � � * � � � �
 � � � � � � 	 � $ � �

 � � � � � � 	 � $ � �
 � � � � � � 	 � $ � �

� �

3.3 Communication profile

The communication profile is the part of the object list which determines the communication
properties of a node (see object list figure). Therefore the communication profile of the object
list contains entries which describe the properties of PDOs.

3.4 Synchronous and Asynchronous PDO transmission

The following PDO types are distinguished.

-Synchronous (CycSync n)
-Asynchronous (AMKevent)

Synchronous transmission of a message means that the transmission of a message is fixed
in time respect to the transmission of the SYNC message (SYNC object). The
synchronisation object is broadcasted periodically by the SYNC producer every ID2
SERCOS Cycle time. This SYNC provides the basic network clock and defines the
communication cycle periode. The synchronisation object carries no data and is easy to
generate. After SYNC object synchronous messages will be send within the synchronous
window length. Asynchronous PDOs will be send after Synchronous. Asynchronous TPDOs
are transmitted without any relation to SYNC. The data of asynchronus RPDOs is passed
directly to the application.

CAN Network Configuration Page 7

 AMKASYN

� , � � � , � � � , � �
� � � � � � � � � � � � � � � � � �� � � ! � � � � � 	

- � � * � (
. � � & � !

� � � ! � � � � � 	

 � � 	

� 	 � � ! � � � � � 	 �

 � � 	

� � $ �

Figure 3-3: Synchronous and Asynchronous PDO transmission

The jitter of this SYNC depends on the bit rate of the bus as even the very high priority SYNC
has to wait for the current message on the bus to be transmitted before it gains bus access.

Received synchronous messages will be actuate after the next SYNC object. After actuation
the synchronous messages become active in the slaves. The following figure shows the
prinziple of SYNC PDOs transmission

CAN Network Configuration Page 8

 AMKASYN

� , � �
� � � � � �

� , � �
� � � � � �

� , � �
$ � 	 	 � & �

� , � �
$ � 	 	 � & �

� � � � � � � � � �
� � � � � � 	 � $ � � � � *
� � � � � 	 � � � � � � � � � *
	 � � ! � � � � � 	
/
 � �

� � � � � � 	 � $ � � � � *
� � � 	 � � ! � � � � � 	
/
 � � � � � � � � � � � � �

� � � � � � 	 � $ � � � � * �
� � � � � 	 � � � � � � � � � * �
	 � � ! � � � � � 	
/
 � �

� � � � � � 	 � $ � � � � * � � � �
	 � � ! � � � � � 	 � /
 � �

� � � � � � 	 � $ � � � � *
� � � 	 � � ! � � � � � 	

 � �

� � � � � � 	 � $ � � � � *
� � � 	 � � ! � � � � � 	

 � �

� � $ � � � 	 � � $ $ � * � � � � � � � �) � � � � � � � , � �
� � � � � � � � � � 	 � $ � � � � * � � � � 	 � � ! � � � � � 	 � #
 � �

	 � � ! � � � � � 	 � (� � * � (� � � � & � !

� � $ $ � � � � � � � � � � � � � � � � � � � � * � � � � 0 �

	 � � ! � � � � � 	 � (� � * � (� � � � & � !

� � $ $ � � � � � � � � � � � � � � � � � � � � * � � � � 0 �

Figure 3-4: BUS SYNChronization and actuation

Additional to the standard can cable (2 signals CAN_H and CAN_L) AMK supports a
hardware synchronous signal (CAN_S_H and CAN_S_L) the synchronize the KU clock
frequencies to each other. Based on this all synchronous PDOs become active at the same
time in every drive. This is important e.g. for transmission of setpoint values, commands,
actual values,... .

CAN Network Configuration Page 9

 AMKASYN

�

�

�

�

� � � � ' � 	 � � � � 1

� � � � � � � � � � 0

� � � � � � � � � � 2

� � � � � � � � � � � �

� � � � � � � � � � � � 	 � � � � � � � � � � � �
� � � � � � � � � ! " #

� � � 	 $ � % � � & � � � 	 � � � % �
� � � � � � � � � � � � ' (#

 3 # � 	 � � ! � � � � " � *

Figure 3-5: Hardware synchronization

CAN Network Configuration Page 10

 AMKASYN

4 Important for CAN Network configuration

The configuration of a CAN network consists now in assigning suitable values for the
application to the entries of the object list. An important part of this configuration is the
assignment of parameters for T-PDOs and R-PDOs. This will be done in the so-called CAN
Configuration File.

The following questions must be clarified for the configuration of a CAN network:
• Which nodes should be subscribers in the network?
• Which data should be exchanged between the nodes?
• When and how frequently must which data be exchanged?
• Which priorities do the data to be exchanged have?

The answers to these questions result in the values for the parameters of PDOs.

Parameters for T-PDOs and R-PDOs are assigned by means of a CAN configuration file
(*.ccf). The contents of the CAN configuration file is a list of value assignments for entries in
the object lists of the nodes. This file can be created with a standard Windows text editor.

The "CAN Configuration File" is transmitted through the serial interface to the master AE-
PSC card after completion with the AMK auxiliary tools CANconv and DVLader. With these
data the CAN master firstly initializes its own dictionary and then the dictionaries of the other
network nodes through SDOs (Service Data Object).
The following overview illustrates the procedure.

) *) +) ,
) -) �

� � � � . / "

+ , - �� � � � " � � � � �

0 " + , +

� � � � � � � � � � �
 � � � � �

� 1) ! (� � � �

� � � � � � � 4 � � � � � � � � � & � � � � � � � � 5 � � � 4
� 6 7 � � � � � (� � ! � � � � � + � � � * � � � �

� � + � � � � � � � � � & � � $ 	 � � � �
� � � � � � � � � & � � ! � � 6 7 � � � � � � � � � � � � �
� � 4 � � � � � � � � � & � � � � � � � � � � � � � 4
� 6 7 � � � � � � � � �

# � � � 	 � � � � � � & � � ! � � 6 7 � � � � � � � �
� � � � � � � $ � 	 � � �

(� 2 � � 3 � � � � �

4 5 	 	 % � % � � �

� 1) � � � � � � � �

� 1) � � 6 7 � � � �

" � � � � � � � � � � � � �

% � �

� � � � � � $ � 	 � � % � � � � � � � � �

� 5 � 5
� � � � � �
 � � �

� � � � 1 � � � � �
� � � � ' � 	 � � �

� � � � 	 $ � � 	 � � � � 	 (� � � ! � � & � � � �
� �

� � � � � � � � � � � � � & � � ! � � � � � � � � * � 	
�
 1 7 7 7
 � � � * � � � � � � � � � 	

� � � 	

� � � �
 1 8 �
 0 8 �
 2 8 �
 9 � � � � � �
 �

� � � � � � � � � � $
Figure 4-1 Overview of CAN network configuration

CAN Network Configuration Page 11

 AMKASYN

5 Predefinition Files

We support 3 predefined files predefined.ccf, confCommon.ccf and predefAPI.ccf which
frequently contain the usable definitions and processes.

predefined.ccf contains:
• Definitions of communication indices
• Definitions of COB-IDs from the predefined connection set
• Definitions for use of PS terms for mapping entries
• Definitions of transmission types
• Definitions of frequently used indices
• Definitions of AMK specific indices
• Definitions of complex configuration commands

This file is read at the start of a CAN configuration file with readFile.

confCommon.ccf contains:
• Master: automatic setting of index 0x1004 "Number PDOs"
• Master: automatic generation of the necessary client SDO
• Master: setting of index 0x2102 "AMK specific data"
• All slaves: setting of index 0x100c "GuardTime" and index 0x100D "LifeTimeFaktor"

Different symbols must be assigned values for executing confCommon.ccf. This file is read
at the and of a CAN configuration file with readFile.

Additional we support a File which is called predefAPI.ccf. This File opens a very
comprehensive access to our drive functionality via API parameters which can directly used
as mapping entries. API is the KU drive Application interface where the predefAPI.ccf opens
access to. PredefAPI.ccf will be read via command readFile predefAPI.ccf.

The command Alias is used to describe parameters with symbols. Use of these keywords
can highly simplify the configuration with many nodes. Special care is necessary in use to
avoid unwanted overwriting.

It is naturally possible to create own definitions and processes and to file them in own *.ccf
files.

CAN Network Configuration Page 12

 AMKASYN

6 Write a Can Configuration File

The following descibes how to create the CAN Configuration File and which entries have to
be done to define the transmit and receive PDO´s of your application. The file can be written
with every Windows text editor program. See also to the example at the end of this chapter.

6.1 Common parameters

Command Meaning
nodelist contains all node numbers
nodegroub slaves contains all slave nodes
alias BaudrateVal defines the baudrate 1)
alias NodeGuardVal node guarding

master checks the presence of all configured
slaves
0: node guarding OFF
1: node guarding ON

alias ActivNodesVal delay time after that the master will initialize the
slaves. See ID34026
0: OFF (no delay time)
e.g. 0x3000=3sec delay

alias GuardTimeVal cycle time in which the NMT Master sends
request to one slave. Within two requests the
slave has to send a confirmation to the master

alias LifeTimeFaktorVal life guarding
Life Time Factor=LTFmaster*number of slave*2
0: OFF

Node guarding
master checks the presence of all configured slaves. Within guardTime one slave is checked.

Life guarding
Life Time=LifeTimeFactor*GuardTime
Slave expected 1 node guarding request from master within the lifetime to check if master is
alive

1) Alias BaudrateVal

1000kb
 800kb
 500kb
 250kb
 125kb
 50kb
 20kb
 10kb

CAN Network Configuration Page 13

 AMKASYN

6.2 Transmit PDO

Command Meaning
alias master/slave PDO to master/slave (node n adressing)
alias PDOno PDO number
alias Map transmission data
alias TransTyp transmission type of PDO
alias COBpdo Identifier of the PDO for adressing and

priority of the message (arbitration prinziple)
aliasend end of transmit PDO
confMasterTransmitPDO

Example:

// Master Configuration
// Transmit PDO

alias master 1 //master is node number 1
alias PDOno 1 //1st PDO of the Can Configuration File
alias Map OAD0 OAD4 //2 DWORDS are send in CAN synchronous area
alias TransType CycSync1 //PDO is send after sync signal every ID2 time
alias COBpdo 0x00000201 //COB-ID
confMasterTransmitPDO

6.3 Receive PDO

Command Meaning
alias master/slave PDO from master/slave (node n adressing)
alias PDOno PDO number
alias Map transmission data
alias TransTyp transmission type of PDO
alias COBpdo Identifier of the PDO for adressing and

priority of the message (arbitration prinziple)
aliasend end of receive PDO
confMaster/SlaveReceivePDO

Example:

// Slave Configuration
// Receive PDO

alias slave 2 //slave is node number 2
alias PDOno 2 //2nd PDO of the Can Configuration File
alias Map OED0 OED4 //2 DWORDS are received
alias TransType CycSync1 //PDO is received after sync signal every ID2 time
alias COBpdo 0x00000201 //COB-ID
confSlaveReceivePDO

CAN Network Configuration Page 14

 AMKASYN

6.3.1 Mapping entry (alias Map)

To be able to exchange data with the PLC via PDO mapping, the following names are
agreed:

Ex Input byte
EWx Input word
EDx Input double word
OEx Input byte optional module for fast function
OEWx Input word optional module for fast function
OEDx Input double word optional module for fast function

Ax Output byte
AWx Output word
ADx Output double word
OAx Output byte optional module for fast function
OAWx Output word optional module for fast function
OADx Output double word optional module for fast function

The relation between PS designators and CAN index/subindex is defined in predefined.ccf
which is read in the CAN Configuration File.

6.3.2 Relation of PS designator to the CAN index/subindex

Asynchronous (AFP and I/O) area

Data Transmit asynchron Receive asynchron
DWORD AD0, AD4, AD8...AD252 ED0, ED4, ED8...ED252
CAN Index Dword 200C sub 1-64 2000 sub1-64
Word AW0, AW2, AW4...AW254 EW0, EW2, EW4...EW254
CAN Index Word 200D sub 1-128 2001 sub 1-128
Byte A0, A1, A2, A3...A255 E0, E1, E2, E3...E255
CAN Index Byte 200E sub 1-255 2002 sub 1-255

Synchronous area (Fast Function)

Data Transmit synchron Receive synchron
DWORD OAD0, OAD4, OAD8...OAD60 OED0, OED4, OED8...OED60
CAN Index Dword 200F sub 1-64 2003 sub1-64
Word OAW0, OAW2, OAW4...OAW62 OEW0, OEW2, OEW4...OEW62
CAN Index Word 2010 sub 1-128 2004 sub 1-128
Byte OA0, OA1, OA2, OA3...OA63 OE0, OE1, OE2, OE3...OE63
CAN Index Byte 2011 sub 1-255 2005 sub 1-255

CAN Network Configuration Page 15

 AMKASYN

Binary I/O area

The objects used here are agreed in CiA-DS 401 Device Profile for I/O modules.

CAN object I/O access
62000108 Index 6000 Subindex 01 size 08 (8-bit) (output_1_byte 0)

8 bit digital output
60000108 Index 6000 Subindex 01 size 08 (8-bit) (input_1_byte_0)

8 bit digital input

See also API index table

6.3.2.1 Access to Application Interface (API) inside KU

With the mapping entry it is posible to get access directly to the KU drive interface called API
(Application Interface). The mapping entries are defined in the file predefAPI.ccf which is
read from the Can configuration file. Every parameter from API can be added to the file
predefAPI.ccf according to the API parameter list see chapter API.

�

. .

�

	 � 	 � � � � �
 � � 8 � +

� �
 � � � 9 # � �
 � � � * #

�

.

�

�

� � 8 � ! � 1 � � � � �

� � 8 � ! � " � � � �

 / (
� 8 0 3 � (8
 �

8 �
� 8 0 3 � (8
 �

 / (: � � � 6 � � � � � � � � % � �
 � � � 8 � � � � � �

8 � : � � � � � � � 6 � � � � � � � � % � �
 � � �
 � � � � � � 8

� � 8 � ! � � � � � � � � 	 � � � � � � � � � � � % � 	 � � ; �
� � � � � � � � � � � � � � � � 	 � � � � � � � � � 0 � 1 #
� �
 � ! � � � � 	 � � � � � � � � � � � � � 	 � ; �
� � � � � � � � � � � � � � � � � � 	 $ � � � � � � � % � � � � � � �

% � � � � � � �

" < � � = " � � � � �

Figure 6-1: Scheme of data transfer

CAN Network Configuration Page 16

 AMKASYN

Data consistence, data types

• access to byte and word data (DPRAM READY/BUSY logic)
• access to double word types must be organized in an exact time slot to synchronized

signal
• access to semaphores like AFP data is controlled via handshake mechanisms
• Link between CAN (BUS) <-> API is organized always via CAN object dictionary. In fact

CAN mapping always works with object dictionary.
Copy API <-> CAN is performed each interrupt after PGT.

Copy direction

CAN -> API WR
CAN <- API RD

6.4 Index table API

e.g. to receive the actual position of a axis via Can Bus the mapping entry for the receive
PDO will be:

alias MAP actual_position_value

length
[byte]

CAN name CAN
Index

CAN
Sub
index

CAN copy
direction
CAN<->API

Copy
time
[ms]

 Setpoints
4 main_set_point 0x2030 0x01 CAN to API 0.5 1)
4 second_set_point 0x2030 0x02 CAN to API 0.5 1)
2 additional_set_point 0x2030 0x03 CAN to API 0.5 1)

4 main_set_point_RD 0x2031 0x01 API to CAN 0.5 1)
4 second_set_point_RD 0x2031 0x02 API to CAN 0.5 1)
2 additional_set_point_RD 0x2031 0x03 API to CAN 0.5 1)
 Actual values
2 actual_16_bit_message 0x2040 0x01 API to CAN 0.5 2)
4 actual_32_bit_message 0x2040 0x02 API to CAN 0.5 3)
4 actual_position_value 0x2040 0x03 API to CAN 0.5
 Bit messages NU NU
2 device_status_bits 0x2048 0x00 API to CAN 5.0
2 device_control_bits 0x2049 0x00 CAN to API 5.0
2 real_time_bits 0x204A 0x00 API to CAN 5.0
1 main_set_point_synchronisation 0x204B 0x00 API to CAN 0.5
 I/O Area
1 input_1_byte_0 0x6000 0x01 API to CAN 1.0 4)
1 input_1_byte_1 0x6000 0x02 API to CAN 1.0 4)
1 input_1_byte_2 0x6000 0x03 API to CAN 1.0 4)
1 input_1_byte_3 0x6000 0x04 API to CAN 1.0 4)
1 input_1_byte_4 0x6000 0x05 API to CAN 1.0 4)
1 input_1_byte_5 0x6000 0x06 API to CAN 1.0 4)
1 input_1_byte_6 0x6000 0x07 API to CAN 1.0 4)
1 input_1_byte_7 0x6000 0x08 API to CAN 1.0 4)

CAN Network Configuration Page 17

 AMKASYN

length
[byte]

CAN name CAN
Index

CAN
Sub

CAN copy
direction

Copy
time

index CAN<->API [ms]
1 input_1_byte_0_WR 0x4000 0x01 CAN to API 1.0 4)
1 input_1_byte_1_WR 0x4000 0x02 CAN to API 1.0 4)
1 input_1_byte_2_WR 0x4000 0x03 CAN to API 1.0 4)
1 input_1_byte_3_WR 0x4000 0x04 CAN to API 1.0 4)
1 input_1_byte_4_WR 0x4000 0x05 CAN to API 1.0 4)
1 input_1_byte_5_WR 0x4000 0x06 CAN to API 1.0 4)
1 input_1_byte_6_WR 0x4000 0x07 CAN to API 1.0 4)
1 input_1_byte_7_WR 0x4000 0x08 CAN to API 1.0 4)

1 output_1_byte_0 0x6200 0x01 CAN to API 1.0 5)
1 output_1_byte_1 0x6200 0x02 CAN to API 1.0 5)
1 output_1_byte_2 0x6200 0x03 CAN to API 1.0 5)
1 output_1_byte_3 0x6200 0x04 CAN to API 1.0 5)
1 output_1_byte_4 0x6200 0x05 CAN to API 1.0 5)
1 output_1_byte_5 0x6200 0x06 CAN to API 1.0 5)
1 output_1_byte_6 0x6200 0x07 CAN to API 1.0 5)
1 output_1_byte_7 0x6200 0x08 CAN to API 1.0 5)

1 output_1_byte_0_RD 0x4200 0x01 API to CAN 1.0 5)
1 output_1_byte_1_RD 0x4200 0x02 API to CAN 1.0 5)
1 output_1_byte_2_RD 0x4200 0x03 API to CAN 1.0 5)
1 output_1_byte_3_RD 0x4200 0x04 API to CAN 1.0 5)
1 output_1_byte_4_RD 0x4200 0x05 API to CAN 1.0 5)
1 output_1_byte_5_RD 0x4200 0x06 API to CAN 1.0 5)
1 output_1_byte_6_RD 0x4200 0x07 API to CAN 1.0 5)
1 output_1_byte_7_RD 0x4200 0x08 API to CAN 1.0 5)
 Error Bits
2 error_bits 0x204C

0x204C
0x01
0x02

API to CAN
CAN to API

 6)

 Analog Area
2 analog_out_1 0x6411 0x01 CAN to API 1.0 9)
2 analog_out_2 0x6411 0x02 CAN to API 1.0 9)
2 analog_out_3 0x6411 0x03 CAN to API 1.0 9)
2 analog_out_4 0x6411 0x04 CAN to API 1.0 9)

2 analog_out_1_RD 0x4411 0x01 API to CAN 1.0 9)
2 analog_out_2_RD 0x4411 0x02 API to CAN 1.0 9)
2 analog_out_3_RD 0x4411 0x03 API to CAN 1.0 9)
2 analog_out_4_RD 0x4411 0x04 API to CAN 1.0 9)

1 actual_position_referenced 0x204D 0x00 API to CAN 5.0
 Setpoint Source NU NU
4 setpoint_source1 0x2050 0x01 API to CAN 7)
4 setpoint_source2 0x2050 0x02 API to CAN 7)
4 setpoint_source3 0x2050 0x03 API to CAN 7)
4 setpoint_source4 0x2050 0x04 API to CAN 7)

4 setpoint_source1_WR 0x2051 0x01 CAN to API 7)
4 setpoint_source2_WR 0x2051 0x02 CAN to API 7)
4 setpoint_source3_WR 0x2051 0x03 CAN to API 7)

CAN Network Configuration Page 18

 AMKASYN

length
[byte]

CAN name CAN
Index

CAN
Sub

CAN copy
direction

Copy
time

index CAN<->API [ms]
4 setpoint_source4_WR 0x2051 0x04 CAN to API 7)
 AFP area
8 AFP write block 5.0 10)
8 AFP read block 5.0 11)

− 1) function of operating mode (ID32800...)
− 2) function of AW16 message (ID32785)
− 3) function of AW32 message (ID32786)
− 4) every input byte shows the state of 8 internal binary inputs, actual copy direction API

 to CAN (up to version 0501) and depending on mapping for next software versions.
− 5) every output byte writes to 8 internal binary outputs, actual copy direction API to

 CAN (up to version 0501) and depending on mapping for next software versions.
− 6) error_bits are copied in asynchronous time not cyclic
− 7) copy time is depending on ID2 „SERCOS cycle time“
− 9) actual copy direction API to CAN (up to version 0501) and depending on mapping for

 next software versions.
− 10) AFP write block only accessible through dict. object 0x2021 sub1 to sub8.
− 11) AFP read block only accessible through dict. object 0x2020 sub1 to sub8.

All this functionality is valid with PSC software PSC 1.01 4800 and KU version KU 1.11 3900.

6.4.1 Transmission Type (alias TransTyp)

TransType Meaning
CycSync x Transmission rate of x means that the synchronous PDO

message is transmitted with every x-th SYNC object. The
cycle time of the SYNC object is ID2 SERCOS cycle time.
e.g. ID2=2ms, CycSync3 : transmitted every 6ms
(commands, setpoints, actual values,...)

AMKevent Asynchronus PDO;
PDO will be transmitted only if data changed without any
relation to the SYNC object. (AFP or I/O transmission)

6.4.2 COB-ID and arbitration prinziple (alias COBpdo)

The CAN bus becomes a network in that messages of different priority are transmitted by
broadcasting between all subscribers. The key concept is the so-called arbitration system
which regulates the bus accesses of each subscriber.

If a subscriber wants to send a message (PDO), then it sends a telegram header when the
bus is free. The header contains an 11-bit communication object identifier (obj-id,COB-ID)
which is assigned specifically to this message. The lowest significant object identifier has the

CAN Network Configuration Page 19

 AMKASYN

highest priority, gains the arbitration and receives the bus access. Its message is sent
without loss of time.

Figure 6-2 Arbitration principle

1 � � � � � � *

 � � � $ � � 7 � � � �

� � � ! � � : � 9 *
� � � ! � � : � 9 >
� � � � � � � � 	

1 � � � � � � +

 � � � $ � � 7 � � � �

� � � ! � � : � * +
� � � ! � � : � ? @
� � � ! � � : � A *

1 � � � � � � -

 � � � $ � � 7 � � � �

� � � ! � � : � , +
� � � ! � � : � @ -
� � � ! � � : � A >

1 � � � � � � ,

 � � � $ � � 7 � � � �

� � � ! � � : � 9 @
� � � ! � � : � 9 >
� � � � � � � � � �

� � � � . � �

(� � � � � � � 	 �
� � � � � � � � � � � � 	 � � 8 � # � � � � � � � � � �
� � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 	 � � � 5

1 � � � � � � * � � � � ! � � : � , ? � � 9 9 * 9 � 9 9 * * � � � � � # � � � � � � �

1 � � � � � � , � � � � ! � � : � - * � � 9 9 * 9 � * 9 9 * � � � � � #

� � � � � � � � � � � � �
 � � � � � � : � 9 9 * 9 � 9 9 * * � � � � � #

Tx

Rx

7 6 5 4 3 2 1 0

0 0 0 0 01

0 0 0 0 01 1 1

11

Tx

Rx 0 0 0 0 01 1 1

0 0 0 0 01 1 1

0 0 0 0 01 1 1

(bin)

(bin)

(bin)

(bin)

(bin)

St
art
bit

CAN Bus
Signal

Master 3
obj-id: 41

Master 1
obj-id: 35

Master 3 switches from
transmitting to receiving

(Winner)

LS
B

M
SB

CAN Network Configuration Page 20

 AMKASYN

7 CCF File according to a example application

The CAN network has a master KU (node 1) a slave KU (node 2) and an external I/O module
with 32 inputs and outputs (node 5).

The following figure defines which data will be exchanged between the nodes.

. � - 2 0 . � - 2 0

� $ � � � � � � � �
 � � � � � � � � � � � 	 � : � � � � � � � � � �

. � � ' � �

� - 1 ; � - 1 ;

� � � � � � 1 0 : � � � � � � � � � � � 1 2 0

� � � � % � 1 0 : � � � � � � � � � % � 1 2 0

� � � � � 5
 < (� � � �

� � � � � 5
 < � � � *

� � � � � � � = � � � � � � � � � � � � � � 9 � � � � � * * � � � � � � � < 	 � � < � � � � �

� � � � � % � = � � � � � � � � � � � � % � 9 � � � � � � � � � � < � � 	 � � � � � < � � � � � � � � � � � � � � < 1 ; � � � < $ � 	 	 � & �

 � '
 � � ? #1 � " (3 0 � � * # " 7 � 6 3 � � � + #

� � � � � - 2 0 � � �

� � � � % - 2 0

� � � � � = 7 7 2 0

� � � � % = 7 7 2 0

1

1

0

0

2

2

 � �

1 : 1

1 : 9

1 : 0

1 : >

0 = 1

0 = 0

� � � < � �

� � � � � 1

� � � � � 1

� '
 � � � � �

� '
 � � � � �

� '
 � � � � �

� '
 � � � � �

 � � � # ,
 %

Figure 7-1: Data exchange definition

The following CCF-File describes the application according to the above definitions. This file
needs to be downloaded to the master with the tools CANConv and DVLader.

// ===
// Filename: example01.ccf//
// Date: 12.09.01
//===
// History
// 100901
// ==
 readFile predefined.ccf
 readFile predefAPI.ccf

//------------------------
// Common parameters
//------------------------
 nodelist 1 2 5
 nodegroup slaves 2 5

 alias BaudrateVal 1000kb
 alias NodeGuardVal 0 //0 off 1 on
 alias ActivNodesVal 0 //0 off 0x10 on
 alias GuardTimeVal 0
 alias LifeTimeFaktorVal 0

CAN Network Configuration Page 21

 AMKASYN

//------------------------
// Master Configuration
//------------------------

 alias master 1

// 1.Transmit PDO to Slave No2 (KU)
 alias PDOno 1
 alias Map OAD0 OAD4
 alias TransTyp CycSync1
 alias COBpdo 0x00000181
 aliasend

 confMasterTransmitPDO

// 1.Transmit PDO TPDO to Slave No2 (KU)
 alias PDOno 2
 alias Map AD128 AD132 //AFP write block
 alias TransTyp AMKevent
 alias COBpdo 0x00000182
 aliasend

 confMasterTransmitPDO

// 1.Transmit PDO TPDO to Slave No5 (WAGO I/O)
 alias PDOno 3
 alias Map AW32
 alias TransTyp AMKevent
 alias COBpdo 0x00000201
 aliasend

 confMasterTransmitPDO

// 1. Receive PDO from Slave No2 (KU)
 alias PDOno 1
 alias Map OED0 OED4 //actual_position, actual_16bit_message
 alias TransTyp CycSync1
 alias COBpdo 0x00000184
 aliasend

 confMasterReceivePDO

// 1. Receive PDO from Slave 1
 alias PDOno 2
 alias Map ED128 ED132 //AFP read block
 alias TransTyp AMKevent
 alias COBpdo 0x00000185
 aliasend

 confMasterReceivePDO

// 1. Receive PDO from Slave No5 (Wago I/O)
 alias PDOno 3
 alias Map EW32
 alias TransTyp AMKevent
 alias COBpdo 0x00000202
 aliasend

 confMasterReceivePDO

CAN Network Configuration Page 22

 AMKASYN

//------------------------
// Slave 2 Configuration
//------------------------

 alias slave 2

// 1.Transmit PDO
 alias PDOno 1
 alias Map actual_position_value actual_16bit_message
 alias TransTyp CycSync1
 alias COBpdo 0x00000184
 aliasend

 confSlaveTransmitPDO

// 1.Transmit PDO
 alias PDOno 2
 alias Map AFP_read
 alias TransTyp AMKevent
 alias COBpdo 0x00000185
 aliasend

 confSlaveTransmitPDO

// 1. Receive PDO from Master
 alias PDOno 1
 alias Map additional_set_point
 alias TransTyp CycSync1
 alias COBpdo 0x00000181
 aliasend

 confSlaveReceivePDO

// 1. Receive PDO from Master
 alias PDOno 2
 alias Map AFP_write
 alias TransTyp AMKevent
 alias COBpdo 0x00000182
 aliasend

 confSlaveReceivePDO

//---------------------------------------
// Slave 5 Configuration Wago EA Modul
//---------------------------------------

 alias slave 5

// 1. Transmit PDO to Master
 alias PDOno 1
 alias Map input_1_byte_0 input_1_byte_1 input_1_byte_2 input_1_byte_3
 alias TransType AMKevent
 alias COBpdo 0x00000202
 aliasend

 confSlaveTransmitPDOnew

// 2. Receive PDO from Master
 alias PDOno 2
 alias Map output_1_byte_0 output_1_byte_1 output_1_byte_2 output_1_byte_3

CAN Network Configuration Page 23

 AMKASYN

 alias TransTyp 1
 alias COBpdo 0x00000201
 aliasend

 confSlaveReceivePDOnew

 readFile confCommon.ccf

/*================================= EOF=============================*/

CAN Network Configuration Page 24

 AMKASYN

8 Converting with AMK tool CANConv

The following operations are performed in the conversion of a configuration source file (*.ccf)
into a configuration binary file (*.ccb):

• Creation of the entries according to regulations in the configuration source file
• However no configuration data are contained for nodes which are listed in the nodelist,

stands in the configuration binary file for number of supported entries: 0
• Configuration data for nodes which stand in nodelist are removed
• Sorting the entries according to node number
• Sorting the entries in node 1 = Master according to index and subindex
• Testing for double entries for index/subindex of a node
 Note: Double entries generated by PDO for [COBID] and the number of the mapping

entries are ignored
• Output of the result in the configuration binary file (*.ccb)
• Transformation of the configuration binary file (*.ccb) into a text file *.txt
• If errors are determined, then the conversion is aborted and there is an error output

8.1 Results message

Screen display for errorfree conversion (example)

Screen display on faulty configuration source file (example):

Program version
Input files
 Configuration source file *.ccf
 Files read with readFile
Selected nodes (see node list)
 Files read with readFile
Output files
 Bineary configuration file *.ccb
 Configuration file in text form
Ready message

Error message:
Error line number
Cancellation message

CAN Network Configuration Page 25

 AMKASYN

8.2 Installation and selection of CANConv

The installation of all required files including examples is performed by selecting
setupCanConvert.exe.

Standalone mode
Selecting Canconv.bat starts the application and initially shows a file selection dialog. After
a file of the type *.ccf has been selected, the conversion starts automatically. After completed
conversion (see results message)
the window can be closed again. On frequent use you are recommended to create a link with
Canconv.bat on the desktop. To avoid visibility of the DOS window, the properties "Execute
as symbol" and "Close on exiting" should be assigned to it (only Win95/Win98).

Linking with AmkDvLader
The configuration binary files *.ccb created in the conversion must be loaded on the CAN
master for your application with the aid of the AmkDvLader program. Canconv.bat can also
be selected by AmkDvLader. For this purpose the selection of AmkDvLader must be
supplemented by the following parameters (see also AmkDvLader description).

-tccf -cC:\YOUR_PATH\CanConv\Canconv.bat -eccf
e.g.
 -tccf -cC:\Programme\CanConv\Canconv.bat -eccf

CAN Network Configuration Page 26

 AMKASYN

AmkDvLader now receives an additional button "Canconv.bat".

The button is activated if a file of the type *.ccf is selected. The conversion of the selected
*.ccf file is started by activating the "Canconv.bat" button. After successful conversion the
created *.ccb file can be loaded immediately to the CAN master by activating "Copy - F5".

CAN Network Configuration Page 27

 AMKASYN

9 AMK tool DVLader

9.1 Introduction

The program described here is a Windows program for access to file management systems
(DV) on MC and PS cards which can be reached through Sbus. It has the following
properties:

• Simultaneous display of all files of a selected PC path and a selected DV (2-window
display)

• Fast view of the contents of a selected file (PC or DV) as binary file or for known file types
as text file

• Functions for copying between PC and DV (both directions) as well as for deleting and
renaming files in the PC or in the DV

• Display of the current Sbus topology (all active interfaces as well as the DVs connected to
them)

• The program works under Window 95®, Windows 98® and Windows NT®. The Sbus can
always be used through Com interface; the AB-K02 card does not function under
Windows NT!

• There is a freely assignable special function for selecting an arbitrary program.

The general principles of Windows operation are presupposed in this description.

9.2 Configuring Sbus

So that it is possible to work with the Sbus, its physical interfaces (physical ports) must be
defined and configured. This is done using the "SbusRegister" program which is enclosed
with the installation.

In the normal case only the required COM port 1 or 2 must be selected and confirmed by OK
button. The two other options concern bus interfaces through additional special hardware.
Other Com interfaces can be set using the "Advanced" button if available in the current PC.

The settings which are made here are valid globally for all programs running on this PC.
They must be made generally before selecting the DvLader.

CAN Network Configuration Page 28

 AMKASYN

The "SbusDialog" program also enclosed is used for testing the Sbus connection.

It is possible to test with this whether a connection between PC and the opposite number can
be made with the selected settings. The connection changes the icon of the Com port into
the OK state.

Note!
This test program cannot run jointly with another Sbus application in the normal case.
Therefore close the monitor before starting the DvLader!

CAN Network Configuration Page 29

 AMKASYN

9.3 Operation

9.3.1 Starting the program

The following main window appears after selecting the program:

The workspace is divided into three vertically divided parts:

• The left column shows the selected PC path and the files contained in it

• The central column is used for displaying in each case a selected DV and the files
contained in it

• The right, largest part serves for displaying the contents of a file marked in one of the two
left column (fast view)

CAN Network Configuration Page 30

 AMKASYN

After a few seconds the Sbus goes into the OK state and the DV and the files contained in it
are displayed in the central column:

9.3.2 Selection of the working path in the PC

A selection dialog with which the PC working path can be selected appears after activating
the "Select path..." button .

9.3.3 Selection of the DV

In the normal case only one DV is available on the Sbus. This is then selected automatically.
If several DVs are active, the required DV must be selected by the operator by clicking in the
tree diagram .

CAN Network Configuration Page 31

 AMKASYN

9.3.4 Selection of the file to be edited

To be able to work with the actual DV function, a file must be selected in the PC or in the
DV . Only one of the files is always ready for editing either in the PC or in the DV. The
contents of the selected file are displayed in the window of the fast view. The display is made
in text form if the file is recognized as text file, or binary for all other file types. Only the first
1000 bytes of the file are displayed in each case and the remainder is cut off.

9.3.5 Editing and copying a file

The buttons at the bottom of the window refer generally to the file selected in the PC or in the
DV:

• Edit: The selected file is transferred to the Windows system editor for editing. This function
works only with the files available on the PC.

• Copy: The selected file is copied from the PC to the DV or vice versa.

• Rename: The selected file can be remained.

• Delete: The selected file is deleted (after a prompt).

CAN Network Configuration Page 32

 AMKASYN

9.4 Configuration possibilities through command line parameters

9.4.1 Extension of the list of the text file formats

The following file types are always interpreted as text files:

• .red

• .ini

• .txt

This list can be extended as desired using the command line parameter "-t". The file types
.doc and .bat are displayed in addition as text files by selecting the program with the
parameters

DvLader -tdoc -tbat

Caution: There must be no space between the command and the file type!

9.4.2 Definition of a special function

The DvLader program can be extended by the selection of a special function. An executable
file which implements the function is determined by the command "-c". The file types which
can edit the special function are defined with the command "-e". The special function refers
like all other functions always to the selected file. However, it works only with files available
on the PC.

CAN Network Configuration Page 33

 AMKASYN

In the following case

 DvLader -cc:\programme\msoffice\winword\Winword.exe -edoc -etxt

the special function becomes active if the selected file has the type .doc or .txt.

CAN Network Configuration Page 34

	Abbreviations and explanations
	CAN BUS Interface
	CANopen
	Object list
	Real time communication
	Communication profile
	Synchronous and Asynchronous PDO transmission

	Important for CAN Network configuration
	Predefinition Files
	Write a Can Configuration File
	Common parameters
	Transmit PDO
	Receive PDO
	Mapping entry (alias Map)
	Relation of PS designator to the CAN index/subindex
	Access to Application Interface (API) inside KU

	Index table API
	Transmission Type (alias TransTyp)
	COB-ID and arbitration prinziple (alias COBpdo)

	CCF File according to a example application
	Converting with AMK tool CANConv
	Results message
	Installation and selection of CANConv

	AMK tool DVLader
	Introduction
	Configuring Sbus
	Operation
	Starting the program
	Selection of the working path in the PC
	Selection of the DV
	Selection of the file to be edited
	Editing and copying a file

	Configuration possibilities through command line parameters
	Extension of the list of the text file formats
	Definition of a special function

